Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Transl Oncol ; 34: 101709, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20230770

ABSTRACT

Background: Data regarding outcomes among patients with cancer and co-morbid cardiovascular disease (CVD)/cardiovascular risk factors (CVRF) after SARS-CoV-2 infection are limited. Objectives: To compare Coronavirus disease 2019 (COVID-19) related complications among cancer patients with and without co-morbid CVD/CVRF. Methods: Retrospective cohort study of patients with cancer and laboratory-confirmed SARS-CoV-2, reported to the COVID-19 and Cancer Consortium (CCC19) registry from 03/17/2020 to 12/31/2021. CVD/CVRF was defined as established CVD or no established CVD, male ≥ 55 or female ≥ 60 years, and one additional CVRF. The primary endpoint was an ordinal COVID-19 severity outcome including need for hospitalization, supplemental oxygen, intensive care unit (ICU), mechanical ventilation, ICU or mechanical ventilation plus vasopressors, and death. Secondary endpoints included incident adverse CV events. Ordinal logistic regression models estimated associations of CVD/CVRF with COVID-19 severity. Effect modification by recent cancer therapy was evaluated. Results: Among 10,876 SARS-CoV-2 infected patients with cancer (median age 65 [IQR 54-74] years, 53% female, 52% White), 6253 patients (57%) had co-morbid CVD/CVRF. Co-morbid CVD/CVRF was associated with higher COVID-19 severity (adjusted OR: 1.25 [95% CI 1.11-1.40]). Adverse CV events were significantly higher in patients with CVD/CVRF (all p<0.001). CVD/CVRF was associated with worse COVID-19 severity in patients who had not received recent cancer therapy, but not in those undergoing active cancer therapy (OR 1.51 [95% CI 1.31-1.74] vs. OR 1.04 [95% CI 0.90-1.20], pinteraction <0.001). Conclusions: Co-morbid CVD/CVRF is associated with higher COVID-19 severity among patients with cancer, particularly those not receiving active cancer therapy. While infrequent, COVID-19 related CV complications were higher in patients with comorbid CVD/CVRF. (COVID-19 and Cancer Consortium Registry [CCC19]; NCT04354701).

2.
Lancet Reg Health Am ; 19: 100445, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2239808

ABSTRACT

Background: Breakthrough SARS-CoV-2 infections following vaccination against COVID-19 are of international concern. Patients with cancer have been observed to have worse outcomes associated with COVID-19 during the pandemic. We sought to evaluate the clinical characteristics and outcomes of patients with cancer who developed breakthrough SARS-CoV-2 infections after 2 or 3 doses of mRNA vaccines. Methods: We evaluated the clinical characteristics of patients with cancer who developed breakthrough infections using data from the multi-institutional COVID-19 and Cancer Consortium (CCC19; NCT04354701). Analysis was restricted to patients with laboratory-confirmed SARS-CoV-2 diagnosed in 2021 or 2022, to allow for a contemporary unvaccinated control population; potential differences were evaluated using a multivariable logistic regression model after inverse probability of treatment weighting to adjust for potential baseline confounding variables. Adjusted odds ratios (aOR) and 95% confidence intervals (CI) are reported. The primary endpoint was 30-day mortality, with key secondary endpoints of hospitalization and ICU and/or mechanical ventilation (ICU/MV). Findings: The analysis included 2486 patients, of which 564 and 385 had received 2 or 3 doses of an mRNA vaccine prior to infection, respectively. Hematologic malignancies and recent receipt of systemic anti-neoplastic therapy were more frequent among vaccinated patients. Vaccination was associated with improved outcomes: in the primary analysis, 2 doses (aOR: 0.62, 95% CI: 0.44-0.88) and 3 doses (aOR: 0.20, 95% CI: 0.11-0.36) were associated with decreased 30-day mortality. There were similar findings for the key secondary endpoints of ICU/MV (aOR: 0.60, 95% CI: 0.45-0.82 and 0.37, 95% CI: 0.24-0.58) and hospitalization (aOR: 0.60, 95% CI: 0.48-0.75 and 0.35, 95% CI: 0.26-0.46) for 2 and 3 doses, respectively. Importantly, Black patients had higher rates of hospitalization (aOR: 1.47, 95% CI: 1.12-1.92), and Hispanic patients presented with higher rates of ICU/MV (aOR: 1.61, 95% CI: 1.06-2.44). Interpretation: Vaccination against COVID-19, especially with additional doses, is a fundamental strategy in the prevention of adverse outcomes including death, among patients with cancer. Funding: This study was partly supported by grants from the National Cancer Institute grant number P30 CA068485 to C-YH, YS, SM, JLW; T32-CA236621 and P30-CA046592 to C.R.F; CTSA 2UL1TR001425-05A1 to TMW-D; ACS/FHI Real-World Data Impact Award, P50 MD017341-01, R21 CA242044-01A1, Susan G. Komen Leadership Grant Hunt to MKA. REDCap is developed and supported by Vanderbilt Institute for Clinical and Translational Research grant support (UL1 TR000445 from NCATS/NIH).

4.
Cancers (Basel) ; 14(17)2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2009955

ABSTRACT

BACKGROUND: Patients with sarcoma often require individualized treatment strategies and are likely to receive aggressive immunosuppressive therapies, which may place them at higher risk for severe COVID-19. We aimed to describe demographics, risk factors, and outcomes for patients with sarcoma and COVID-19. METHODS: We performed a retrospective cohort study of patients with sarcoma and COVID-19 reported to the COVID-19 and Cancer Consortium (CCC19) registry (NCT04354701) from 17 March 2020 to 30 September 2021. Demographics, sarcoma histologic type, treatments, and COVID-19 outcomes were analyzed. RESULTS: of 281 patients, 49% (n = 139) were hospitalized, 33% (n = 93) received supplemental oxygen, 11% (n = 31) were admitted to the ICU, and 6% (n = 16) received mechanical ventilation. A total of 23 (8%) died within 30 days of COVID-19 diagnosis and 44 (16%) died overall at the time of analysis. When evaluated by sarcoma subtype, patients with bone sarcoma and COVID-19 had a higher mortality rate than patients from a matched SEER cohort (13.5% vs 4.4%). Older age, poor performance status, recent systemic anti-cancer therapy, and lung metastases all contributed to higher COVID-19 severity. CONCLUSIONS: Patients with sarcoma have high rates of severe COVID-19 and those with bone sarcoma may have the greatest risk of death.

6.
Open Forum Infect Dis ; 9(3): ofac037, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1701403

ABSTRACT

BACKGROUND: The frequency of coinfections and their association with outcomes have not been adequately studied among patients with cancer and coronavirus disease 2019 (COVID-19), a high-risk group for coinfection. METHODS: We included adult (≥18 years) patients with active or prior hematologic or invasive solid malignancies and laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection, using data from the COVID-19 and Cancer Consortium (CCC19, NCT04354701). We captured coinfections within ±2 weeks from diagnosis of COVID-19, identified factors cross-sectionally associated with risk of coinfection, and quantified the association of coinfections with 30-day mortality. RESULTS: Among 8765 patients (hospitalized or not; median age, 65 years; 47.4% male), 16.6% developed coinfections: 12.1% bacterial, 2.1% viral, 0.9% fungal. An additional 6.4% only had clinical diagnosis of a coinfection. The adjusted risk of any coinfection was positively associated with age >50 years, male sex, cardiovascular, pulmonary, and renal comorbidities, diabetes, hematologic malignancy, multiple malignancies, Eastern Cooperative Oncology Group Performance Status, progressing cancer, recent cytotoxic chemotherapy, and baseline corticosteroids; the adjusted risk of superinfection was positively associated with tocilizumab administration. Among hospitalized patients, high neutrophil count and C-reactive protein were positively associated with bacterial coinfection risk, and high or low neutrophil count with fungal coinfection risk. Adjusted mortality rates were significantly higher among patients with bacterial (odds ratio [OR], 1.61; 95% CI, 1.33-1.95) and fungal (OR, 2.20; 95% CI, 1.28-3.76) coinfections. CONCLUSIONS: Viral and fungal coinfections are infrequent among patients with cancer and COVID-19, with the latter associated with very high mortality rates. Clinical and laboratory parameters can be used to guide early empiric antimicrobial therapy, which may improve clinical outcomes.

7.
Hematology Am Soc Hematol Educ Program ; 2021(1): 439-447, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1666619

ABSTRACT

Oral hypomethylating agents (HMAs) represent a substantial potential boon for patients with myelodysplastic syndrome (MDS) who have previously required between 5 and 7 visits per month to an infusion clinic to receive therapy. For patients who respond to treatment, ongoing monthly maintenance visits represent a considerable burden to quality of life, and for those who are early in therapy, these sequential visits may tax transportation and financial resources that would be optimally distributed over the treatment cycle to facilitate transfusion support. The availability of oral HMAs may support the optimal application of these agents by contributing to adherence and lessening the burden of therapy, potentially encouraging patients to stay on longer-term treatment. Distinct pharmacokinetic profiles for the recently approved oral HMAs (oral azacitidine and decitabine-cedazuridine) result in differential toxicity profiles and have prompted their clinical trial development in lower- and higher-risk MDS, respectively.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Azacitidine/therapeutic use , Decitabine/therapeutic use , Myelodysplastic Syndromes/drug therapy , Uridine/analogs & derivatives , Administration, Oral , Aged , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/pharmacokinetics , Azacitidine/administration & dosage , Azacitidine/pharmacokinetics , Decitabine/administration & dosage , Decitabine/pharmacokinetics , Female , Humans , Quality of Life , Uridine/administration & dosage , Uridine/pharmacokinetics , Uridine/therapeutic use
8.
Blood ; 136(Supplement 1):37-38, 2020.
Article in English | PMC | ID: covidwho-1338941

ABSTRACT

Introduction:Hypomethylating agents (HMAs) or DNA methyltransferase inhibitors (DNMTi) such as decitabine or azacitidine are established standard of care for the treatment of MDS and CMML. The oral bioavailability of these agents has been limited due to rapid degradation by cytidine deaminase (CDA) in the gut and liver, hence requiring intravenous infusion or subcutaneous injections daily for 5-7 days every month (m). This parenteral administration requirement adds significant burden to older cancer patients due to daily time commitment and travel to treatment centers. It also increases exposure to and infection risk with SARS-CoV-2 during the COVID-19 pandemic. Oral decitabine 35 mg/cedazuridine 100 mg (ASTX727) is an oral fixed dose combination drug of decitabine and the CDA inhibitor cedazuridine that have shown 99% (90% CI 93% to 106%) equivalent exposure to standard dose IV decitabine 20 mg/m2 in a randomized cross-over study (Garcia-Manero et al, ASH 2019). Here, we present the clinical efficacy and safety results of oral decitabine/cedazuridine from 133 patient study in MDS and CMML (ASTX727-02 ASCERTAIN study).Methods:We used a randomized cross over design where patients were randomized in the first 2 cycles 1:1 to either Sequence A: decitabine 35 mg/ cedazuridine 100 mg in Cycle 1 followed by IV decitabine at 20 mg/m2 in Cycle 2, or Sequence B: IV decitabine in Cycle 1 followed by oral decitabine/cedazuridine in Cycle 2 to do an intra-patient comparison of decitabine PK (primary PK endpoint: decitabine AUC equivalence over 5 days of dosing). Cycles were repeated every 28 days. All patients received oral decitabine/cedazuridine in all subsequent cycles from Cycle 3 onwards until disease progression or unacceptable toxicity. Patients were eligible as per the FDA-approved label of IV decitabine (MDS patients by FAB classification including CMML, or MDS IPSS Intermediate-1, 2 or high-risk patients). Clinical endpoints were best response as assessed by an independent expert panel according to International Working Group (IWG) 2006 response criteria, transfusion independence for at least 8 or 16 consecutive weeks, overall survival, and safety. Adverse events (AEs) were graded by Common Terminology Criteria for Adverse Events (CTCAE) v 4.03.Results:138 subjects were randomized, of whom 133 were treated on study. The median age was 71.0 years (range 44-88), 65% were male, 88% MDS and 12% CMML, 43% were either red blood cells (RBCs) or platelets transfusion-dependent at baseline, 25% had poor-risk cytogenetics, and 42% had baseline bone marrow blasts >5%. At the data cutoff for the response analysis, the median duration of follow up was 12.6 m (range 9.3 to 20.5 m) with median number of treatment cycles of 8 (range 1 to 18). Of the 133 treated patients the best response was complete response (CR) in 28 patients (21%;95% CI 15-29%), marrow (m)CR with hematological improvement (HI) in 20 patients (15%), mCR without HI in 23 patients (17.3%), and HI in 10 patients (7.5%) for an overall objective response (CR+mCR+HI) in 81 patients (61%;95% CI 52-69%). Median duration of CR was 7.5 m (range 1.6 to 17.5 m), and median time to CR was 4.3 m (range 2.1 to 15.2 m). Of the 133 treated patients 27 (20%) went on to receive allogeneic hematopoietic cell transplant. Of the 57 patients who were either RBCs or platelets transfusion-dependent at baseline, 30 (53%) became transfusion independent for both RBCs and platelets for at least 8 consecutive weeks, and 19 (33%) were both RBCs and platelets transfusion independent for at least 16 consecutive weeks. Median survival has not been reached. Most common Treatment-Emergent AEs of Grade ≥3 regardless of causality were neutropenia in 51.5%, thrombocytopenia in 50%, anemia in 40%, febrile neutropenia in 26%, leukopenia in 21%, pneumonia in 12%, and sepsis in 7% of patients treated with oral decitabine/cedazuridine (excluding the IV decitabine cycle).Summary/Conclusions: Efficacy and safety from oral decitabine 35 mg/ cedazuridine 100 mg daily for 5 days every 28 days are consist nt with clinical data from standard IV decitabine 20 mg/m2 daily for 5 days. Oral decitabine/cedazuridine is the only oral HMA with systemic exposure equivalent to its injectable drug. Further investigation of oral decitabine/cedazuridine in all-oral combination studies is warranted and underway.

9.
Cancer Cell ; 39(8): 1045-1047, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1293633

ABSTRACT

SARS-CoV-2 vaccines are effective in preventing COVID-19. Patients with cancer are at high risk for severe COVID-19 and are appropriately prioritized for vaccination. Several studies in this issue of Cancer Cell add to our knowledge of the heterogeneity of immune responses to vaccination among patients with cancer and identify important areas for future research.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , Immunity , Neoplasms/epidemiology , Neoplasms/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/administration & dosage , Humans , Public Health Surveillance
10.
Blood ; 138(9): 811-814, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1288619
11.
JAMA Oncol ; 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1274650

ABSTRACT

Importance: COVID-19 is a life-threatening illness for many patients. Prior studies have established hematologic cancers as a risk factor associated with particularly poor outcomes from COVID-19. To our knowledge, no studies have established a beneficial role for anti-COVID-19 interventions in this at-risk population. Convalescent plasma therapy may benefit immunocompromised individuals with COVID-19, including those with hematologic cancers. Objective: To evaluate the association of convalescent plasma treatment with 30-day mortality in hospitalized adults with hematologic cancers and COVID-19 from a multi-institutional cohort. Design, Setting, and Participants: This retrospective cohort study using data from the COVID-19 and Cancer Consortium registry with propensity score matching evaluated patients with hematologic cancers who were hospitalized for COVID-19. Data were collected between March 17, 2020, and January 21, 2021. Exposures: Convalescent plasma treatment at any time during hospitalization. Main Outcomes and Measures: The main outcome was 30-day all-cause mortality. Cox proportional hazards regression analysis with adjustment for potential confounders was performed. Hazard ratios (HRs) are reported with 95% CIs. Secondary subgroup analyses were conducted on patients with severe COVID-19 who required mechanical ventilatory support and/or intensive care unit admission. Results: A total of 966 individuals (mean [SD] age, 65 [15] years; 539 [55.8%] male) were evaluated in this study; 143 convalescent plasma recipients were compared with 823 untreated control patients. After adjustment for potential confounding factors, convalescent plasma treatment was associated with improved 30-day mortality (HR, 0.60; 95% CI, 0.37-0.97). This association remained significant after propensity score matching (HR, 0.52; 95% CI, 0.29-0.92). Among the 338 patients admitted to the intensive care unit, mortality was significantly lower in convalescent plasma recipients compared with nonrecipients (HR for propensity score-matched comparison, 0.40; 95% CI, 0.20-0.80). Among the 227 patients who required mechanical ventilatory support, mortality was significantly lower in convalescent plasma recipients compared with nonrecipients (HR for propensity score-matched comparison, 0.32; 95% CI, 0.14-0.72). Conclusions and Relevance: The findings of this cohort study suggest a potential survival benefit in the administration of convalescent plasma to patients with hematologic cancers and COVID-19.

12.
J Natl Compr Canc Netw ; : 1-4, 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-740554

ABSTRACT

Hematopoietic growth factors, including erythrocyte stimulating agents (ESAs), granulocyte colony-stimulating factors, and thrombopoietin mimetics, can mitigate anemia, neutropenia, and thrombocytopenia resulting from chemotherapy for the treatment of cancer. In the context of pandemic SARS-CoV-2 infection, patients with cancer have been identified as a group at high risk of morbidity and mortality from this infection. Our subcommittee of the NCCN Hematopoietic Growth Factors Panel convened a voluntary group to review the potential value of expanded use of such growth factors in the current high-risk environment. Although recommendations are available on the NCCN website in the COVID-19 Resources Section (https://www.nccn.org/covid-19/), these suggestions are provided without substantial context or reference. Herein we review the rationale and data underlying the suggested alterations to the use of hematopoietic growth factors for patients with cancer in the COVID-19 era.

13.
Lancet Haematol ; 7(8): e601-e612, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-609322

ABSTRACT

The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 is a global public health crisis. Multiple observations indicate poorer post-infection outcomes for patients with cancer than for the general population. Herein, we highlight the challenges in caring for patients with acute leukaemias and myeloid neoplasms amid the COVID-19 pandemic. We summarise key changes related to service allocation, clinical and supportive care, clinical trial participation, and ethical considerations regarding the use of lifesaving measures for these patients. We recognise that these recommendations might be more applicable to high-income countries and might not be generalisable because of regional differences in health-care infrastructure, individual circumstances, and a complex and highly fluid health-care environment. Despite these limitations, we aim to provide a general framework for the care of patients with acute leukaemias and myeloid neoplasms during the COVID-19 pandemic on the basis of recommendations from international experts.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/complications , Infection Control/standards , Leukemia/therapy , Myeloproliferative Disorders/therapy , Pneumonia, Viral/complications , Practice Guidelines as Topic/standards , Adult , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Management , Expert Testimony , Humans , Leukemia/virology , Myeloproliferative Disorders/virology , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Resource Allocation , SARS-CoV-2
14.
Lancet ; 395(10241): 1907-1918, 2020 06 20.
Article in English | MEDLINE | ID: covidwho-401249

ABSTRACT

BACKGROUND: Data on patients with COVID-19 who have cancer are lacking. Here we characterise the outcomes of a cohort of patients with cancer and COVID-19 and identify potential prognostic factors for mortality and severe illness. METHODS: In this cohort study, we collected de-identified data on patients with active or previous malignancy, aged 18 years and older, with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from the USA, Canada, and Spain from the COVID-19 and Cancer Consortium (CCC19) database for whom baseline data were added between March 17 and April 16, 2020. We collected data on baseline clinical conditions, medications, cancer diagnosis and treatment, and COVID-19 disease course. The primary endpoint was all-cause mortality within 30 days of diagnosis of COVID-19. We assessed the association between the outcome and potential prognostic variables using logistic regression analyses, partially adjusted for age, sex, smoking status, and obesity. This study is registered with ClinicalTrials.gov, NCT04354701, and is ongoing. FINDINGS: Of 1035 records entered into the CCC19 database during the study period, 928 patients met inclusion criteria for our analysis. Median age was 66 years (IQR 57-76), 279 (30%) were aged 75 years or older, and 468 (50%) patients were male. The most prevalent malignancies were breast (191 [21%]) and prostate (152 [16%]). 366 (39%) patients were on active anticancer treatment, and 396 (43%) had active (measurable) cancer. At analysis (May 7, 2020), 121 (13%) patients had died. In logistic regression analysis, independent factors associated with increased 30-day mortality, after partial adjustment, were: increased age (per 10 years; partially adjusted odds ratio 1·84, 95% CI 1·53-2·21), male sex (1·63, 1·07-2·48), smoking status (former smoker vs never smoked: 1·60, 1·03-2·47), number of comorbidities (two vs none: 4·50, 1·33-15·28), Eastern Cooperative Oncology Group performance status of 2 or higher (status of 2 vs 0 or 1: 3·89, 2·11-7·18), active cancer (progressing vs remission: 5·20, 2·77-9·77), and receipt of azithromycin plus hydroxychloroquine (vs treatment with neither: 2·93, 1·79-4·79; confounding by indication cannot be excluded). Compared with residence in the US-Northeast, residence in Canada (0·24, 0·07-0·84) or the US-Midwest (0·50, 0·28-0·90) were associated with decreased 30-day all-cause mortality. Race and ethnicity, obesity status, cancer type, type of anticancer therapy, and recent surgery were not associated with mortality. INTERPRETATION: Among patients with cancer and COVID-19, 30-day all-cause mortality was high and associated with general risk factors and risk factors unique to patients with cancer. Longer follow-up is needed to better understand the effect of COVID-19 on outcomes in patients with cancer, including the ability to continue specific cancer treatments. FUNDING: American Cancer Society, National Institutes of Health, and Hope Foundation for Cancer Research.


Subject(s)
Coronavirus Infections/epidemiology , Neoplasms/epidemiology , Pneumonia, Viral/epidemiology , Aged , Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , Betacoronavirus , COVID-19 , Cause of Death , Comorbidity , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Databases, Factual , Female , Humans , Hydroxychloroquine/therapeutic use , Male , Middle Aged , Neoplasms/mortality , Neoplasms/therapy , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/mortality , Prognosis , Risk Factors , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL